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Abstract. This paper further develops the novel notion of deconstruc-
tive learning and proposes a practical model for deconstructing a broad
class of binary classifiers commonly used in vision applications. Specifi-
cally, the problem studied in this paper is: Given an image-based binary
classifier C as a black-box oracle, how much can we learn of its internal
working by simply querying it? To formulate and answer this question
computationally, we propose a novel framework that explicitly identifies
and delineates the computer vision and machine learning components,
and we propose an effective deconstruction algorithm for deconstruct-
ing binary classifiers with the typical two-component design that employ
support vector machine or cascade of linear classifiers as their internal
feature classifiers. The deconstruction algorithm simultaneously searches
over a collection of candidate feature spaces by probing the spaces for
the decision boundaries, using the labels provided by the given classifier.
In particular, we demonstrate that it is possible to ascertain the type
of kernel function used by the classifier and the number of support vec-
tors (and the subspace spanned by the support vectors) using only image
queries and ascertain the unknown feature space too. Furthermore, again
using only simple image queries, we are able to completely deconstruct
OpenCV’s pedestrian detector, ascertain the exact feature used, the type
of classifier employed and recover the (almost) exact linear classifier.

1 Introduction

This paper further develops on the notion of deconstructive learning [1] and pro-
poses a practical model for deconstructing a broad family of binary classifiers
(e.g., object detectors) in computer vision. While the ultimate objective of all
types of learning in computer vision is the determination of classifiers from la-
beled training data, for deconstructive learning, the objects of interest are the
classifiers themselves. As its name suggests, the goal of deconstructive learning
is to deconstruct a given binary classifier C by determining and characterizing
(as much as possible) the full extent of its capability, revealing all of its power,
subtlety and limitation. As an example, imagine that we are presented with a
classifier of great repute, say a pedestrian (human) detector. The detector, as a
binary classifier of images, is presented only as a binary executable that takes
images as inputs and outputs ±1 as its decision for each image. The classifier is
laconic in the sense that except the predicted label ±1, it does not divulge any
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other information such as confidence level or classification margin associated
with each decision. However, we are allowed to query the detector (classifier)
using images, and the problem studied in this paper is to determine the inner
working of the classifier using only image queries and the classifier’s laconic re-
sponses. For example, can we determine the type of features it uses? What kind
of internal classifier does it deploy? Support vector machine (SVM) or cascade
of linear classifiers or something else? If it uses SVM internally, what kind of
kernel function does it use? How many support vectors are there and what are
the support vectors?

Similar to many problems tackled in computer vision, deconstructive learn-
ing is an inverse problem; therefore, without an appropriate regularization, the
problem is ill-posed and it is impossible to define desired solutions. In particu-
lar, since we are allowed to access only the laconic responses of the classifier, the
scope seems almost unbounded. The appropriate notion of regularization in this
context is to define a tractable domain on which solutions can be sought, and the
main contribution of this paper is the proposal of a computational framework
that would allow us to pose and answer the above questions as computationally
tractable problems. Our proposal is based on a specific assumption on the clas-
sifier C that its internal structure follows the common two-component design:
a feature-transform component that transforms the input image into a feature
and a machine-learning component that produces the output by applying its
internal classifier to the feature (see Figure 1). Many existing binary classifiers
in computer vision follow this type of design, a clear demonstration of the di-
vision of labor between practitioners in computer vision and machine learning.
For example, most of the well-known detectors such as face and pedestrian de-
tectors (e.g., [2–4]) conform to this particular design, with other lesser-known
but equally-important examples in scene classification, object recognition and
others (e.g., [5, 6]) adopting the same design. By clearly delineating the vision
and learning components, we can formulate a computational framework for de-
constructing C as the identification problem for its two internal components
from a finite collection of potential candidates.

More precisely, for a given vision classifier C (e.g., an object detector), the
deconstruction process requires a list of features (and their associated trans-
forms) F and a list of (machine learning) classifiers C. Based on these two lists,
the algorithm would either identify the components of C among the elements in
F and C or return a void to indicate failure in identification. Computationally,
the lists define the problem domain, and they constitute the required minimal
prior knowledge of C. In practice, the general outline of the feature used in a
particular vision algorithm is often known and can be ascertained through var-
ious sources such as publications. However, important design parameters such
as smoothing values, cell/block/bin sizes etc., are often not available and these
parameters can be determined by searching over an expected range of values
that made up the elements in F . Similarly, the type of classifier used can often
be narrowed down to a small number of choices (e.g., an SVM or a cascade of
linear classifiers). Within this context, we introduce three novel notions, feature
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identifiers, classifier deconstructors and geometric feature-classifier compatibil-
ity, as the main technical components of the deconstruction process. Specifically,
feature identifiers are a set of image-based operations such as image rotations
and scalings that can be applied to the input images, and the different degree
of sensitivity and stability of the features in F under these operations would
allow us to exclude elements in F , making the process more efficient. For exam-
ple, suppose F contains both SIFT and HOG-based features. Since SIFT is in
principle rotationally invariant, SIFT-based features are more stable under im-
age rotations than HOG-based features; and therefore, if C uses a SIFT-based
feature internally, it outputs would be expected to be more stable under image
rotations. Therefore, by querying C with rotated images and comparing the re-
sults with un-rotated images, we can exclude features in F that are rotationally
sensitive. The classifier deconstructors, on the other hand, are algorithms that
can deconstruct classifiers in C using a (relatively) small number of features by
recognizing certain geometric characteristics of the classifier’s decision boundary
(e.g., its parametric form). For example, an SVM deconstructor algorithm is able
to (given sufficiently many features) determine the number of support vectors
and the type of kernel used by a kernel machine by recognizing certain geometric
characteristics of its decision boundary. The interaction between elements in F
and C during the deconstruction process is based on the notion of geometric
feature-classifier compatibility: for a pair (f, c) of feature f and classifier c, they
are compatible if given sufficiently many features defined by f , the deconstruc-
tor algorithm associated to c can correctly recognize its decision boundary. More
specifically, given a vision classifier C internally represented by a pair (f, c) of
feature f and classifier c, we can query C using a set of images I1, ..., In, and
using the feature (and it associated transform) f , we can transform the images
into features in the feature space specified by f . The deconstructor algorithm
associated with c then determines the classifier based on these features. However,
for an incorrect hypothetical pair (f, c), the difference between the transformed
features specified by f and f are generally non-linear, and this non-linearity
changes the geometric characteristics of the decision boundary in the feature
space specified by f , rendering the deconstructor algorithm c unable to identify
the decision boundary (see Figure 1). The abstract framework outlined above
provides a practical and useful modularization of the deconstruction process so
that the individual elements such as the formation of feature and classifier lists,
feature identifiers and classifier deconstructors can be subject to independent
development and study. In this paper, we realize the abstract framework in con-
crete terms. Specifically, we introduce two deconstructor algorithms for support
vector machine (SVM) and for the cascade of linear classifiers. The former is a
popular family of classifiers widely used in vision applications and the latter is
often deployed in object detectors, with the face detector of Viola-Jones as per-
haps the most well-known example [4]. In the experimental section, we present
three preliminary experimental results demonstrating the viability of the ideas
proposed in this paper. In the first experiment, we show the application of a few
simple heuristics can substantially reduce the size of feature list F and therefore,
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Fig. 1. Left: Schematic illustration of deconstructive learning. Center: Two-
component design of a classifier: a feature-transform component provided by computer
vision followed by a feature-classification component furnished by machine learning.
Right: Schematic illustration of the proposed deconstruction algorithm. Internally,
the algorithm searches over a set of candidate feature spaces and probes the spaces
for decision boundaries. Only in the correct feature space the parametric form of the
decision boundary would be recognized by the deconstructor algorithm.

allow for a more efficient deconstruction process. In the second experiment, we
show, using MNIST dataset, how the type of kernel functions used in a support
vector machine and the number of support vectors can be determined using only
image queries. In the third and final experiment, we present the result of a com-
plete deconstruction of OpenCV’s HOG-based pedestrian detector. The entire
deconstruction process searches over one hundred potential features to correctly
identify the linear classifier used in the detector. The normal vector of the linear
classifier recovered by our algorithm has the normalized correlation of more than
0.99 with the ground truth (i.e., with an angular difference smaller than 2◦). The
MATLAB implementation of the deconstruction algorithm is only around 100
lines of code and it takes no longer than an hour to correctly identify the feature,
the classifier type (linear SVM) and the linear classifier itself.

Related Work To the best of our knowledge, there is not a previous
work on deconstructive learning comparable to the one outlined above. How-
ever, [7] studied the problem of deconstructing linear classifiers in a context that
is quite different from ours. Since only single linear classifiers are studied and
there is no explicit considerations of the interaction between feature transforms
and classifiers, their scope is considerably narrower than ours. Active learning
(e.g., [8] [9] [10]) shares certain similarities with deconstructive learning (DL)
in that it also has a notion of querying a source (classifier). However, the main
distinction is their specificities and outlooks: for active learning, it is general
and relative while for DL, it is specific and absolute. More precisely, for active
learning, the goal is to determine a classifier from a concept class with some
prescribed (PAC-like) learning error bound using samples generated from the
underlying joint distribution of feature and label. In this model, the learning
target is the joint distribution and the optimal learned classifier is relative to
the given concept class. On the other hand, in DL, the learning target is a given
classifier and the classifier defines an absolute partition of the feature space into
two disjoint regions of positive and negative features. In this absolute setting,
geometry replaces probability as the joint feature-label distribution gives way to
the geometric notion of decision boundary as the main target of learning.
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2 Deconstruction Process and Method

Let F , C denote the feature and classifier lists. Given a classifier C with the two-
component design as described above, the deconstruction algorithm attempts to
identify the feature-transform and feature-classification components of C with
the elements in F and C. Specifically, we assume that

– Each feature fi ∈ F defines a feature transform fi : Rd → R
ni from the

image space Rd to a feature space Rni of dimension ni. For technical reason,
the feature transform fi : R

d → R
ni is assumed to be Lipschitz continuous in

that ‖fi(Ia)− fi(Ib)‖2 < Li‖Ia− Ib‖2 for some positive constant Li > 0 and
Ia, Ib ∈ R

d. Furthermore, we assume that an inverse of the feature transform
fi can also be computed: for vi ∈ R

ni , an image in f−1

i (vi) can be computed1.
– Each element ci ∈ C represents a known family of classifiers (e.g., SVM and

cascade of linear classifiers as two different families) and has its associated
deconstructor algorithm (also denoted as ci). For each feature space R

ni ,
with sufficiently many (feature) points located on a hypothetical decision
boundary, ci can determine if such decision boundary is the result of one
of its member classifiers and provide other more detailed information about
the specific classifier. For example, for the deconstructor associated with
SVM, with enough feature points located on a hypothetical decision bound-
ary in R

ni , it can determine if the decision boundary is the result of an SVM
classifier and if so, it will return the type of kernel and the number of sup-
port vectors, etc. The number of required points on the decision boundary
depends on each deconstructor algorithm.

We have assumed that the feature spaces are all continuous (Rni) and the feature
transforms fi are surjective maps. Technically, working in continuous domains is
simpler because useful differential-geometric features such as the normal vectors
of the classifier’s decision boundary are available. Furthermore, continuous do-
mains allow us to locate the decision boundary within any prescribed accuracy
using the simple idea of bracketing (as in root-finding [12]): given a pair of pos-
itive and negative images (PN-pair), we can produce a PN-pair of images near
the decision boundary in the image space by successively halving the interval
between a pair of positive and negative images, using the labels provided by C.
By Lipschitz continuity, a PN-pair (sufficiently) near the decision boundary in
the image space can be transformed by a feature fi ∈ F into a PN-pair near the
decision boundary in the feature space R

ni . By sampling enough PN-pairs that
are near the decision boundary in the image space, we obtain the correspond-
ing PN-pairs near the decision boundary in each feature space R

ni specified by
the feature fi ∈ F . For these sampled PN-pairs in each feature space R

ni , we
apply the deconstructor algorithm c to see if it recognizes the decision bound-
ary from these samples. Furthermore, the inverse feature transform f−1

i permits
the deconstructor algorithm that operates in the (opaque) feature space R

ni to
sample additional features near the decision boundary if necessary. Essentially,

1 For simplicity, we assume that the transform fi is surjective and as a set (of images),
f−1

i
(vi) is nonempty and we can compute an element (image) in f−1

i
(vi)(e.g.,[11]).
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each deconstructor algorithm is designed to probe a given feature space for the
decision boundary and it recognizes the parametric form of the decision bound-
ary arising from a classifier in its associated family. In particular, starting with
a small number of positive features, the deconstructor algorithm proceeds to
explore each feature space Rni by generating points near the decision boundary.

Given the two lists F , C, the deconstruction process proceeds in a direct
manner: run all deconstructor algorithms in C in parallel over all the candidate
features in F , and for each pair (fi, cj) of feature (space) and deconstructor,
ci either succeeds in detecting a recognizable boundary or fails to do so. If
there are no successful pairs (fi, cj), the algorithm then fails to deconstruct C.
Otherwise, it provides the user with all the successful pairs (fi, cj) as potential
candidates for further investigation2. In this paper, the classifier list C contains
two elements: the family of support vector machines (SVM) and the family of
cascades of linear classifiers, and in the following three subsections, we provide
the remaining details in the proposed deconstruction process.

2.1 Feature Identifiers

An important first step in the deconstruction process is to properly define the
lists F and C, with the aim of making them as short as possible. Various heuristics
based on exploiting the differences between various types of features can be
developed to accomplish this goal. For example, it is possible to exclude simple
HOG-based features from F by perturbing the images slightly. In particular,
because HOG (unlike SIFT) is in general not rotationally invariant, and hence,
if the images are slightly rotated, we can expect less-than-stable results from
the classifier C if it uses HOG as the main feature. In the experimental section,
we study several such feature identifiers in the form of simple image operations
such as rotations and scalings, and demonstrate their usefulness in excluding
features in F . On the other hand, the difference between the classifiers in C
can also be exploited to shorten the list C. In our case, it is straightforward to
determine if the given C uses SVM or a cascade of linear classifiers as its internal
classifier. Recall that a cascade of linear classifiers is a decision tree with a linear
classifier associated with each tree node. Consequently, positive features always
take longer to process than negative features and among the negative features,
the running time can vary considerably depending on the depth of the tree.
However, for an SVM-based C, all features are expected to have the same or
similar running times. Therefore, by checking the distribution of the running time
among positive and negative features, we can determine with great certainty the
type of classifier used internally by C.

2.2 Deconstructor Methods

We summarize below prominent and important features of one the deconstructor
algorithms.

2 This part is beyond the scope of this paper.
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Deconstructor for SVM Given a feature space R
l and sufficiently many

PN-pairs near the decision boundary, the deconstructor algorithm is able to

– Determine the kernel type (assuming polynomial, exponential and hyperbolic
tangent kernels).

– Determine the (kernel) subspace spanned by the support vectors. If the num-
ber m of support vectors is smaller than the feature space dimension l, then
the dimension of the kernel subspace also gives the number of support vec-
tors, assuming linear independent.

– For linear SVM (i.e., one single global linear classifier), h(x) = n⊤x+ b, the
normal vector n and bias b can be determined.

– In theory, the number of sampled features required is in the order of O(ml).

The detailed analysis of the SVM deconstructor algorithm is presented in [1]
and in the remaining section, we present the simplest case of polynomial kernels,
demonstrating that the kernel type and the kernel subspace can be determined
by simply querying the classifier C. Recall that the general polynomial kernel of
degree d has the form: for x,y ∈ R

l,

K(x,y) = (x⊤y + 1)d, (1)

and the decision function is given as

Ψ(x) = ω1K(x,y1) + · · ·ωmK(x,ym), (2)

where yi, ωi are the support vectors and their weights, respectively, and the
decision boundary Σ is defined by the equation Ψ(x) = b for some b ≥ 0. The
reason that we can determine the kernel type (in this case, the degree d) is that
the locus of the intersection of the decision boundary Σ with a two-dimensional
affine subspace containing a point close to the decision boundary is (generically)
a polynomial curve of degree d.

More specifically, let x+,x− denote a PN-pair that is sufficiently close to
Σ. We can randomly generate a two-dimensional subspace containing x+,x−

by, for example, taking the subspace A containing x+,x− and the origin in R
l.

For a generic two-dimensional subspace A, its intersection with Σ is an one-
dimensional curve, and the parametric form of this curve is determined by the
(yet unknown) kernel function. This can be easily seem as follows: take x+ as the
origin on A and choose an (arbitrary) pair of orthonormal vectors U1,U2 ∈ R

l

such that the triplet x+,U1,U2 identifies A with R
2. Therefore, any point p ∈ A

can be uniquely identified with a two-dimensional vector p = [p1,p2] ∈ R
2 as

p = x+ + p1U1 + p2U2. (3)

If p ∈ A is a point in the intersection ofA with the decision boundaryΨ(p) = b,
we have

l
∑

i=1

wi((x
⊤

+Yi + p1U
⊤

1 Yi + p2U
⊤

2 Yi) + 1)d = b, (4)

which is a polynomial of degree d in the two variables p1,p2. Therefore, to
ascertain the degree of the polynomial kernel, we can (assuming d < 4)



8 Mohsen Ali, Jeffrey Ho

– Sample at least 9 points on the intersection of the Σ and A.
– Fit a bivariate polynomial of degree d to the points. If the fitting error is

sufficiently small, this gives a good indication that the polynomial kernel is
indeed of degree d.

On the other hand, the reason that the kernel subspace SY spanned by the
support vectors yi can be recovered is the following well-known formula for the
normal vector of the decision boundary at a point x ∈ Σ:

n(x) = ∇Ψ(x) =
m
∑

i=1

αdωi (x
⊤yi + 1)d−1 yi. (5)

We remark that even though the support vectors yi and weights ωi are unknown,
the above formula shows that the normal vectors of the decision boundary Σ
span the kernel subspace SY. Therefore, if sufficiently many points on Σ and
their normal vectors can be determined, the kernel subspace can also be deter-
mined. For non-polynomial kernels, the corresponding formula for the normal
vectors is more complicated and the algorithm to extract the kernel subspace
from the sampled normal vectors requires a more elaborated convex optimiza-
tion.

2.3 Geometric Compatibility Between Features and Deconstructors

In the deconstruction process, the interaction between the features in F and
deconstructors in C is based on the notion of geometry compatibility, and the
deconstruction algorithm selects the pair (f, c) as a solution if the deconstructor
algorithm c recognizes the decision boundary from a collection of sampled points
in the feature space Rn specified by f . The geometric picture is neatly captured
by the following diagram:

R
d f2
−−−−→ R

n2

∼=





y

x





π

R
d f1
−−−−→ R

n1

Suppose f1, f2 are two features in F with their respective feature spaces Rn1 ,Rn2 ,
and the vision classifier C internally employs the pair (f1, c). Therefore, if we
reconstruct the decision boundary in the correct feature space R

n1 , the decon-
structor algorithm would be able to recognize the decision boundary and hence
the pair (f1, c) would be selected by the deconstruction algorithm. However, for
the incorrect feature f2, the decision boundary reconstructed in R

n2 is related
to the decision boundary reconstructed in R

n1 via a map π that arises from the
fact that we use the same set of images in the image space R

d to reconstruct
the decision boundary in both R

n1 and R
n2 . The important observation (or as-

sumption) is that for different features f1, f2, the map π is generally nonlinear
and it would map the decision boundary in R

n1 to a decision boundary R
n2 with
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an unknown parametric form. For example (as will be shown later), for a linear
decision boundary in R

n1 , the corresponding decision boundary in R
n2 would

generally be nonlinear. Therefore, if c is a deconstructor for linear classifier, it
would fail to recognize the decision boundary in R

n2 . For SVM deconstructor,
the map π essentially maps a decision boundary of a known parametric form to
a boundary with unknown parametric form, i.e., the decision boundary in R

n2

is not compatible with the deconstructor c.

3 Experiments

In this section, we present three experimental results. In the first experiment,
we demonstrate the idea of using simple heuristics (image operations) to shorten
the feature list F . In the second experiment, we show that with real image data
how a classifier employing polynomial kernel can be deconstructed. In the third
experiment, we detail the experimental result of deconstructing the pedestrian
(human) detector in the OpenCV library. More experimental results are pre-
sented in the supplemental material.

SIFT + BoW Dense-SIFT + Spatial Pyramid HOG(4) HOG(8)

Rotation(180◦) 0.8000 0.4300 0.6800 0.7450
Zoom-in 0.9950 0.9600 0.3550 0.3850
Translation (8,8) 0.9550 0.8500 0.9550 0.9350

Table 1. Effects of different image transforms on classification results. HOG-based
features as expected produce unstable results under rotation and scale change.

3.1 Distinguish between HOG and SIFT
Many vision algorithms use features derived from the well-known gradient-based
features such as HOG [13] or SIFT[14]. To shorten the search list F , we use
various invariance properties of these features. For examples, with non-dense
SIFT used in the bag of words model, it is generally invariant under scale,
rotation and even shifting transformation. On the other hand, the dense SIFT,
when used in a pyramid scheme, is generally invariant under reasonable amount
of scale change, image flipping and small amount of translations. It is generally
not invariant under rotation or flipping (unless object is symmetric). HOG as
mentioned previously in not invariant under rotation, although it is invariant
under small amount of translation when it is smaller than the size of its cells. In
this experiment, we experimentally demonstrate the above general impression on
the invariance property of the HOG and SIFT under various image transforms.
We compared these properties of the four different type features (see Table 1
and supplementary materials for further details) by constructing aeroplane SVM
classifiers using the images from Caltech 101 dataset [15]. We randomly selected
100 aeroplane images as positive samples and 100 images from other categories
as negative samples. We used four type features extracted from these samples to
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train linear SVMs. In the test phase, three simple image transforms are applied
to the 200 randomly selected test images. The transformations are 180◦ rotation,
a translation of eight pixels in both x and y directions, and a simple zoom in
(achieved by scaling the by a factor of 1.2 and cropping the boundaries). The
classification rates of the SVMs constructed using the four different types of
features and under the three transforms are demonstrated in Table 1. As shown
in the table, rotational invariance of SIFT make it relatively stable under rotation
and scale transforms. We use these invariance results to decrease out feature list
during our experiments

3.2 Deconstructing A Cubic Kernel Machine

In this experiment we trained a simple SVM classifier with cubic kernel using
images from the MNIST dataset [2]. These images were not subjected to feature
transform and the SVM was trained directly on the vectorized images. Using
the method described earlier, we perform bracketing to locate pairs of positive
and negative features (PN-pairs) that are close to the decision boundary. Given
a PN-pair x+,x−, we randomly generate a two-dimensional subspace A con-
taining these two points and compute the intersection of the decision boundary
Σ with the subspace. We remark that this intersection can be easily computed
by randomly generating points on the subspace A and applying bracketing on
A. Two typical intersections are shown in Fig. 2 and both examples display the
“two humps” characteristic of cubic curves. Small fitting error, when approxi-
mating each curve with bivariate cubic polynomial, is a good indication that the
underlying polynomial kernel is of degree three.

38 40 42 44 46
−20

−10

0

10

20

29 30 31 32 33
−20

−10

0

10

20

Fig. 2. Examples of the intersection of the decision boundary Σ with a 2−D subspace.

3.3 Deconstructing OpenCV HOG-based Pedestrian Detector

In this experiment, we deconstruct the pedestrian (human) detector provided in
the OpenCV library [16]. This implementation is based on the algorithm pro-
posed in [13], where histogram of oriented gradients (HOG) is used as feature
with linear (SVM) classifier as internal feature classifier. The goal of this decon-
struction experiment is to recover (a)The three important design parameters for
the HOG feature: cell size, block size and block stride. (b)The parameters for
the linear (SVM) classifier: its weight (normal) vector and bias. For this experi-
ment, a quick check on the running times of a few positive images immediately
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rules out the cascade of linear classifiers as a viable candidate (see Section 3.1)
or more precisely, it shows that the cascade must be a very shallow tree and we
simply interpret the result as ruling out the cascade as a candidate. Furthermore,
because the high-dimensionality of the feature space (usually in the thousands),
the SVM-based classifier is almost certainly linear, since other types of nonlin-
ear kernels are often computationally demanding for high-dimensional features.
In particular, by checking the normal vectors of the decision boundary at forty
different places, it essentially provides only one normal vector, indicating the
underlying linear classifier. Therefore, the classifier list C has only one element
and the kernel type is assumed to be linear. For the feature list F , we define ap-
proximately 30 candidate parameter settings and accordingly, the feature list F
has length 100. More specifically, the cell size can take the three integral values
{4, 8, 16}, and for each cell size, the block size can equal to cell size, double the
cell size or triple the cell size. Similarly, the block stride is set either to half of
the block size, the full block size or twice the block size. We note that different
parameters give different HOG features that typically reside in different feature
spaces (in particular, with different dimension). Note that since we randomly
pair positive and negative images, PN-pair set can have size equal to product
of size of positive image set and negative image set. This restricts which feature
dimensions we can take in consideration. We use the classifier as provided in
the OpenCV without any modification and positive and negative images are ob-
tained by running the classifier over a set of images. We remark that the positive
and negative images are according to the outputs of the classifier C, not visually
which class they should belong to. We randomly pair these positive and negative
images and run the bracketing algorithm to locate PN-pairs (Fig. 3) close to the
decision boundary in the (fixed) image space, and for each such PN-pair close to
the decision boundary in the image space, we compute its corresponding PN-pair
in each of the feature space Rni for fi ∈ F . In this experiment, we do not use the
inverse feature transform to determine the feature labels in the feature space,
although inverse transform for HOG-based features has been proposed in [11].

Fig. 3. Example showing PN pair recovered as the process of the bracketing. Notice
that even when they appear to be very similar, one is labeled as positive sample by
OpenCV person classifier and other as negative. A similar behavior is visible in the right
figure where we trained HOG based SVM classifier for Motorcycle class in Caltech101
dataset [15].

An important experimental result is that linear decision boundary is observed
only for the correct parameter setting, while for incorrect parameter setting, the
decision boundary is generally nonlinear. To efficiently and accurate detect the
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linear boundary in these high-dimensional feature spaces, we use Fisher linear
discriminant (FLD). Specifically, for the labeled PN-pairs in each candidate fea-
ture space, we train a Fisher linear discriminant. If the labeled features are
indeed linearly separable, the Fisher linear discriminant would detect it by cor-
rectly classifying large portion of the label features. Furthermore, in the right
feature space, as we generate more PN-pairs that are close to true decision
boundary, the linear classifier provided by FLD will move closer to the true
linear classifier. This latter statement is easily visualized and its rigorous justi-
fication seems straightforward. In particular, the linear classifier determined by
FLD provides good approximations to the weight (normal) vector and the bias
of the true linear classifier. On the other hand, in the wrong feature space, the
decision boundary would be nonlinear and the trained FLD is not expected to
correctly classify large portion of the labeled features, regardless the number of
PN-pairs generated. Experimental confirmations of these observations are shown
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Fig. 4. LEFT: Deconstruction of OpenCV Pedestrian Detector: Classification
errors for the FLD trained in five different feature spaces. The feature parameters are
given in the legend (cell size, block size) and the visible decrease in classification rates
is observed only in the correct feature space. RIGHT: Deconstruction of airplane

Detector: Number of Orientations (number of bins) is also varied in this experiment,
as indicated by the plots correct number of bins quite strongly impact the results

in Figures 4 and 5. In Fig. 4, the classification error of the trained FLD decreases
only in the correct feature space. And in Fig. 5, 2D projections of the labeled
PN-pairs in three different feature spaces are displayed and linear separability
is clearly shown only for features from the correct feature space. The weight
(normal) vector recovered using FLD with 10, 000 PN-pairs has the normaliza-
tion correlation of 0.99 with the ground truth, i.e., with an angular difference of
roughly 2◦.

4 The Case and Outlook For Deconstructive Learning

Image-based classifications such as face, pedestrian and various object detec-
tions and scene recognition are important computer vision applications that
have begun to have visible and noticeable impact in our daily life. Indeed, with
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Fig. 5. 2D projections of the labeled PN-pairs in three different feature spaces. The
2-D projected subspace is spanned by the normal vector determined by FLD and the
first singular vector for the collection of features. The results from the correct feature
space is shown as the second pair, the two plots display the projections in two different
scales.

the current trend in technology development, it is not difficult to envision a
not-so-distant future in which the world is partially powered by such applica-
tions. In the backdrop of such futuristic vision, deconstructive learning points to
an interesting and uncharted territory, perhaps a promising new direction with
potential for generating important impacts. Several potential consequences of
this new capability are interesting to ponder. A case in point is the OpenCV’s
HOG-based pedestrian detector. To develop such an application, the designers
must have spent weeks if not months of effort in, among other things, gathering
useful training images, managing other often time-consuming logistic matters
and tuning both the feature parameters (cell/block/bin sizes) and the learning
algorithm in order to obtain the best (linear) classifier. However, as demon-
strated in this paper, the detector can be completely deconstructed in a few
hours and the user of the deconstruction algorithm only requires to collect a few
positive images to start the deconstruction process, since the negative images
can be obtained randomly (with labels provided by the classifier C). The result
is certainly not surprising since it basically mirrors the well-known fact that
finding a solution is always more time-consuming than checking the solution.
However, its implications are multiple and perhaps profound. For example, the
result of months or even years of hard work can be deconstructed in a matter
of a few hours, even when it is hidden under the seemingly impenetrable binary
codes. On a more practical side, we believe that deconstructive learning could
provide greater flexibility to the users of AI/machine learning products in the
future because it allows the users to determine the full extent of an AI/ML pro-
gram/system, and therefore, create his/her own adaptation or modification of
the given system for specific and specialized tasks. For example, how would an
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ACCV reviewer know that a submitted binary code of a paper really does im-
plement the algorithm proposed in the paper, not some clever implementation
of some known algorithm? Deconstructive learning proposed in this paper of-
fers a possible solution by explicitly deconstructing the submitted code. Finally,
perhaps the most compelling reason for studying deconstructive learning is in-
scribed by the famous motto uttered by David Hilbert more than eighty years
ago: we must know and we will know! Indeed, when presented with a black-box
classifier (especially the one with great repute), we have found the problem of de-
termining the secret of its inner working by simply querying it with images both
fascinating and challenging, a problem with its peculiar elegance and charm.

In this paper, we have demonstrated the viability of deconstructive learn-
ing. Although the classifier list C consists of only two families, both SVM and
linear cascades are widely-used classifiers in computer vision applications. Work
is currently ongoing to expand the feature and classifier lists F , C to include
structured SVM [17], dictionary-learning-based classifier [18], bag of words fea-
tures [19] and others. Recently, neural network-based classifiers such as those
emerged from the deep learning community [20, 21] has gained considerable in-
terest and popularity. At the first glance, the direct approach proposed in this
paper seems insufficient and inadequate for deconstructing this type of classi-
fiers. However, we believe that more indirect approaches and formulations are
possible, with the aim of identifying crucial information that are necessary for
the deconstruction process.

5 Conclusions

We have proposed a novel framework for deconstructing binary classifiers that
follow the common two-component design: a feature-transform component fol-
lowed by a feature-classification component. Experimental results have confirmed
both the viability and practicality of the proposed deconstruction algorithm.
While much work remains for the future, the results in our paper perhaps serve
as a small but substantial step towards a better understanding of deconstructive
learning, hitherto an uncharted territory that seems ripe for further exploration.
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